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Aberrations of varied line-space grazing incidence gratings
in converging light beams

Michael C. Hettrick

Analytic calculations are presented which describe aberrations of the in-plane and off-plane varied line-
space grating designs we recently proposed [Appl. Opt. 22, 3921 (1983)]. Ray traces confirming these results
to within typical accuracies of 10% are illustrated for several examples. Spectral field aberrations are calcu-
lated for convenient focal surfaces, and optimal field curvatures are calculated and ray traced. An improve-
ment of the off-plane fan grating is proposed, where the angular spacings of the grooves are varied to achieve
a large decrease in grating aberrations. However it is shown that, in conical diffraction, the net resolution
can also be dominated by a diminished dispersive power compared to in-plane grating mounts. Curved
groove in-plane grating designs are ray traced, revealing no substantial degradation in imaging performance
by restricting such curves to concentric circles. However, it is also shown that the general case of hyperbolic
grooves can be fabricated by use of visible or UV holography, with small residual aberrations. We designate
this new class of holographic gratings as Type V. Misalignment aberrations of high resolution in-plane grat-
ings, for the in situ cases of off-axis illumination, grating and detector displacements, and grating rotational

misalignment, are calculated and found to be generally small.

I. Introduction

In a recent communication,! we presented two general
designs of grazing incidence gratings which constitute
a new geometric class of spectrometers. This class
consists of a plane reflection grating which intercepts
light which otherwise would converge to a single imaging
focus. This focus is thereby reflected to a stigmatic
point corresponding to the zero-order (or A = 0) image
off the grating. Aberration correction of nanzero
wavelengths is then provided through a smooth spatial
variation in the grating constant. In the simplest cases,
this variation is over only one of the pupil coordinates,
leading to either in-plane straight parallel grooves or
off-plane straight fan grooves. In the more advanced
designs, the remaining higher-order aberrations
(dominantly coma) are removed by curvature of the
grooves. Recently, we uncovered several interesting
papers by Murty23 and Hall* in which some aspects of
this approach were previously investigated at normal
incidence. A thesis by Baumgardner® on the aberration
correction of concave gratings also proposed unusual
groove patterns having some similarities with our work.
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Cash® also recently discussed a design related to one of
the two subclasses which we have proposed.

In this paper we explicitly derive the imaging results
reported in our previous communication. In Sec.II, the
grating aberrations are expanded as power series in the
grating pupil coordinates and are compared to ray
traces. Ray traces are also used to confirm the growth
in aberrations away from the aberration-corrected
wavelength for various focal surfaces. Section III
presents an analysis of dispersive aberrations resulting
from the finite size of the zero-order image and the finite
dispersive power of the gratings as situated in con-
verging light. Comparisons are made between the re-
sulting performance limits for in-plane vs off-plane
grating mounts. In Sec. IV we extend our analysis of
this class of gratings to include calculations of aberra-
tions resulting from both translational and rotational
misalignments of the collecting mirror, grating, and
detector. Section V summarizes this work.

Il. Grating Aberrations

In this section we assume the grating is fed by a col-
lecting mirror which brings light to a perfect focus at a
fixed point in space. Our analysis of the resulting
grating aberrations uses the light-path function to de-
termine wave front aberrations and employs Fermat’s
principle to convert these into focal plane aberrations
of the images. Aberrations will be expressed as poly-
nomials in the grating pupil coordinates by use of power
series expansions.
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Fig. 1. In-plane orthogonal coordinate system. Projections are

displayed on the (a) central dispersion plane y = 0, (b) grating plane

z =0, and (c) a plane x = £o. The 3-D distances are indicated rather
than the projected distances.
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A. Straighf and Parallel In-Plane Grooves

Figure 1 shows the projection of our straight groove
in-plane grating geometry on an orthogonal coordinate
system. The x axis is perpendicular to the rulings and
passes through the grating midplane. The z axis is
perpendicular to the grating plane, therefore the dis-
persed spectrum lies in the x-z plane, which is also a
plane of symmetry for the converging light beam. The
y axis is collinear with the central ruling of the grating
and lies in the grating plane. The origin of this or-
thogonal coordinate system is located at the geometric
center of the grating.

1. Imaging at a Correction Wavelength

With straight and parallel grooves, varied line spacing
provides perfect focusing along the x axis for a prese-
lected wavelength Ax. The functional variation of the
line-spacing d(x) is given in Ref. 1 and can also be ex-
pressed implicitly in terms of the x coordinate for the
Nth groove:

mNAx =+/(t1 = xn)2+hi—=(to—xn)2+h5—Po, (1)

as shown in Fig. 2, where (t1,h1) and (£o,h) are Carte-
sian distance parameters to the focal positions of A+ and
A = 0, respectively, and where Py is the path-length
difference for groove N = 0, constrained to be at x =
0:

Po=+ti+h}~ i+ hi (2)
We remark that Eq. (1) assigns negative values of m
to inside spectral orders. This is the European con-
vention, however the opposite convention is of equal
popularity.
To calculate the aberrations resulting from violation
of Eq. (1) for y < 0, let L(x,y,0) denote the distance
from any point (x,y,0) on the grating pupil to the mirror
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Fig. 2. Distance parameters which specify the in-plane grating
geometry.

focus. Due to the plane grating surface, this distance
also equals that to the zero-order image. Also let
L’*(x,y,0) denote the distance to the focal position of
Ax. The path-length difference L’ — L defines the shift
in wave fronts which interfere at the focal surface. For
a perfect (stigmatic) focus at Ax, this difference must
jump by the quantity mA+ between adjacent grooves,
where m is the spectral order. If the groove x = 0 is
assigned N = 0, the error in the wave front (the error in
the light-path function) is

Ax = L'+ = L + mNA« — [L’%(0,0,0) — L(0,0,0)]. (3

The bracketed term is Py as defined above. For straight
grooves, anastigmatic focusing along the central groove
(x = 0) requires L’+(0,0,0) = L(0,0,0) = Lo, so Py van-
ishes. However, even if nonzero, it would not contrib-
ute to any derivatives of A, From Fig. 1(a), we de-
rive

L = +/L§sin2ag + (Lo cosap — )2 + y%
L'x = \/Lf) Sin2ﬁo + (Lo cosﬂo —x)%+ y2;

and, since the line spacing is adjusted to yield A% = 0
along ¥y = 0, we find

mN\# = +/L§sin2ag + (Lo cosag — x)2
— /L3 sin2Bo + (Lo cosfo — x)2.

Expressing all distances in units of L:

L =+/1—-2x cosap + x2 + y?%

L' = /T = 2x cosfBo + x2 + ¥2, (4a)
mNAx = /T — 2x coseg + %2
— /1= 2x cosBp + %2 (4b)

Expanding the radicals and taking advantage of the fact
that only terms containing y2 and differing between L
and L’s will contribute to A*, we have the result re-
ported previously!:

Ax = (cosPy — cosaig)[1/2xy2 + 3/4x2y2(cosfo + cosa)

—-3/8xyt+...]
= (mA+/d)[1/2xy?2 + 8/4x2y2%(cosfo + cosco)
—3/8xy++...]. 5)



By use of Fermat’s condition, the wave front aber-
ration A can be converted into image aberrations A\
and H, where A\ is the extremum ray wavelength ex-
tent of the image in the dispersion direction, and H is
the extremum ray image height perpendicular to the
dispersion direction. The general relations connecting
wave front and image aberrations for an in-plane grating
are’

MAXN = (mMN/do)/(6A/0x), (6a)
H =0A/dy, (6b)

where all distances are in units of Ly. Since this dis-
tance is used to obtain the above relations and will vary
in small amounts across the resulting finite size image,
these equations are accurate only to the fifth order in
the grating coordinates, which is sufficient for the
present analysis. Differentiating A+, we have

0Ax/0x = (mA+/do)[1/2 y2 + 3/2 xy2(cosfo + coscg) +...], (7a)
0Ax/0y = (mA+/do)(xy + 3/2 x2y — 3/2xy3 +...). (7b)

Since y = *Lo/(2fy) and x = *Lo(tmax —
Omin)/ (20tmay) at the edges of the grating, the extremum

image aberrations for a filled rectangular aperture
are

As/ANx = 8f 24 .., (8a)
Hx/Lg = (mA+/do)/(20tmaxfsfy), (8b)

where f; = 1/(®max — ®min). Note that A/AX is inde-
pendent of the graze angle, allowing the same imaging
properties in the limit as the graze angle vanishes.

Figure 3(c) confirms the above predictions, where the
system parameters are those of the short-wavelength
flight spectrometer for the Extreme Ultraviolet Ex-
plorer (EUVE) satellite:

Lo = 485.2 mm; to = 481.5mm; hg = 59.9 mm;
Py = 0.26 mm; t; =463.9mm; h; = 143.1 mm;
fy =6.24; do = 4350 A; A =1604; m=-1

The graze angle of incidence therefore ranges from
o = 6.02° — 8.62°, resulting in f, =~ 22 over a ruled
width of 173.16 mm. The resolving power is Ax/AX\+ ~
300 and the image height H+ ~ 0.4 mm. The plate
scale is ~2.64 A/mm at A+, which combined with a col-
lecting mirror focal length of 1361.4 mm yields ~0.5
A/min of arc of sky. The image shapes reveal the
presence of coma, which is predicted by Eq. (5) to limit
the resolution.

2. Spectral Field Aberrations

The flat grating surface provides stigmatism at A =
0, and the variation in line spacing is chosen to provide
stigmatism or quasi-stigmatism at a selected Ax. In
general, this class of designs therefore has very wide
wavelength coverage at moderate resolution, given a
suitably chosen focal surface. Specifically, in this
section we consider the growth in aberrations as one
moves away from A« for the straight groove grating.

Ray traced in Fig. 3 are the aberrations over a broad
range in wavelength. The wavelength at which maxi-
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Fig. 3. Ray trace spot diagrams for the straight groove in-plane

grating specified in the text but with A+ = 150 A: (a)~(d) along the

sagittal circle of radius Lo; (¢)-(g) along the tangential circle of radius

0.56 Lo; and (h)-(k) along a plane passing through A+. Wavelengths

within each of the triplets are separated by ANA = 0.01. Linear scales
are indicated at the top.

mum wavelength correction was enforced, \x, is 150 A
for this example. The degradation in image quality as
one moves away from A+ depends on the shape of the
focal surface. We consider two cases: a planar detector
and a spherical detector. (As the spectrum falls within
the x-z plane, a spherical detector is virtually equivalent
to a cylindrical detector.) A straightforward calculation
yields the analytic result for grating aberrations along
a spherical detector centered at the grating geometric
center (0,0,0) with radius equalto Lg. First, we gener-
ilize Eq. (3) for wavelengths A not necessarily equal to
*:

A=Ax+ (L' —L+mNAN —(L’x — L+ mNAx)

‘ =L —L's + mN(\ = ), 9)
where
L’ =+/1—2x cosf + x2 + y3;
(10a)
L’s = /1 —=2x cosfo + % + y%
mN(\ — A+) = (M A+ — 1)(v/T — 2x cosap + x2
—+/1—=2x cosBp + x2). (10b)

From the grating equation we derive the difference
relations,

cosBo — cosag = (mAx/dy), (11a)
cosf — cosag = mN/dy, (11b)
cosfo — cosB = (m/dg)(A+ — N), (11¢)

which when substituted into the series expansion of Eq.
(9) yield

A — Ax = (m/do)[-1/2 xy2(Ax — A)
+1/2 (mMdo)(Ax — N)x2+...] - (12)
Using the result previously obtained for Ax [Eq. (5)],

note that A = 0 at A\ = 0, as required by the plane grating
surface. Taking the derivatives 6/6x and 6/6y:

8A/6x = 1/2 (mNdo)[y? + 2xm (N« — N)/do], (13a)
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A8y = (mNdo)xy. (13b)

By use of Egs. (6a) and (6b), these wave front errors
yield focal aberrations:

NAX = 8/[f32 + 8|m(Ax — N)/dol/(fz0)], (14a)
H/LO = (mA/dO)/(Zamaxfxfyl (14b)

Therefore, the spectral aberration AN has an addi-
tional term which increases linearly with the departure
from A* and is proportional to the grating ruled width.
The astigmatism has the same dependence as at A+ and
is linear with wavelength. The ray trace results of Figs.
3(a)—(d) and Fig. 4 confirm the above formulas along the
sagittal cylinder. Thus, although AN is minimized at
A%, the (sagittal) surface which minimizes H away from
this point gives rise to various AN which may be un-
necessarily large.

The field curvature for minimization of A\ in the
immediate vicinity of A+ has been numerically calcu-
lated in the limit as the ruled width vanishes. The
upper dotted curve in Fig. 5 shows the results plotted
vs B/a. The optimal detector radius typically lies
within the 0.5-0.65 Lj range. Over finite ranges in
wavelength and using finite grating sizes, this radius
systematically decreases into the 0.4-0.5 Ly range as
shown by the lower dotted curve. The ray trace results
for this tangential cylinder, shown in Figs. 3(e)-(g) and
Fig. 4(a), reveal a significant improvement in spectral
range and result from a detector curvature which min-
imizes AN at A+/2, A+, and 3/2\+. A plane detector can
be made to pass through A+ and also through a second
focal point. For the ray traces of Figs. 3(h)-(k), this
second point was chosen as that which minimizes the
astigmatism at 80 A. The resulting detector pitch angle
also passes near the point of minimum AN for A =~ 20 A,
as revealed by the second relative maximum in Fig. 4(a).
The spectral resolution in this figure is derived from 1-D
binning of the extremum rays, and thus underestimates
both the FWHM resolution and the resolution achiev-
able with a 2-D imaging detector, as evident in Fig. 3.

B. Curved Groove In-Plane Designs

In the limit of an illuminating curve of infinitesimal
width, y = f(x), straight grooves can always provide a
point image at A+ by appropriate choice of groove
spacing. However, to obtain such stigmatic focusing
given illumination over a finite area on the grating pupil,
the grooves must be curved. While the large spatial
variation of the groove spacings in the x direction brings
all light to the same focus at A« for y = 0, only a slight
curvature of the grooves is required to maintain the
same focus for all other cross sections y £ 0.

1. Holographic Ruling

The interference fringes from coherent light sources
located at the two stigmatic points (m = 0 and Ax) will
record the corresponding stigmatic groove pattern.l2
Figure 6(b) shows a ray trace for an EUV curved groove
grating, using the tangential focal surface derived above.
This requires the central groove to be straight, resulting
in hyperbolas on either side which curve in opposite
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directions [compare Fig. 1(c) of Ref. 1]. The correction
wavelength is at 304 A, near which an enormous increase
in spectral resolution is revealed in comparison to the
straight groove ray trace of Fig. 6(a). Even far away
from this stigmatic wavelength, the spectral resolution
is significantly higher, and the focal surface images are
straight for this curved groove design.

However, the recording wavelength in the above ex-
ample must equal mA+. Given use at extreme UV
wavelengths A+ ~ 100-1000 A, the grating must operate
in spectral orders m ~ 10 if conventional visible lasers
(Ar > 3637 A) are used as the light sources. In the soft
x-ray band, A+ ~ 10-100 A, spectral orders m ~ 100
must be used, suggesting an echelle grating. However,
to operate efficiently in spectral orders higher than the



r*— L.Omm —=t

(a)

44 4 STRAIGHT
14 \ GROOVES
SN
Lt
, (b)
K] ; HYPERBOLIC
e | e
i fi { i § : ? 5 Ar=3044
1402035 R 200058 2600658 | 3040758 | 380t0.95%
(c)
HYPERBOLIC

GROOVES,
Ag=3637R

e

(d)
CONCENTRIC
GROOVES

o
e
R

Fig.6. Ray trace spot diagrams for (a) straight grooves, (b) stigmatic

hyperbolas, (c) quasi-stigmatic hyperbolas generated by visible ho-

lography, and (d) concentric grooves. In all cases, the tangential focal

surfaces have been employed, and each wavelength in the triplets is
separated by AN/ = 1/400.

first (or possibly the second) requires the groove profiles
to be sawtooth.2 Except for some special recording
geometries,®? such profiles are not the natural result of
a holographic ruling. However, the possibility of stig-
matic or quasi-stigmatic groove patterns provided by
holographic methods of fabrication deserves close at-
tention, as other performance criteria (e.g., levels of
stray light and ghosts)9-11 may also be significantly
improved in this manner.

It is conceivable to arrange our recording geometry
to provide both the required imaging and blaze prop-
erties. To operate as an echelle, it is also possible to
employ ion-etching techniques'? to obtain the required
groove profiles. Such techniques notwithstanding, a
grating used in the |m| = 1 spectral order would in
general not require an accurately controlled groove
profile. While avenues which may permit the use of
strong quasi-coherent x-ray or EUV sources to obtain
Ar/A+ = 1 are being investigated, we present here sev-
eral schemes to scale the recording wavelength by the
required factor of 10 or more into the regime of con-
ventional lasers. In the case of A+ < 100 A, such a
scaling will also bring the recording wavelength into the
regime of existing free-electron lasers (\g > 1000 A).

One obvious procedure is to literally scale all linear
dimensions by the ratio of recording wavelength to
correction wavelength (A\g/A+). The large photoresist
can then, in principle, be reduced by this same ratio,
resulting in a flat grating surface with the required
groove spacings. However, typically desired ruled
widths are already quite large (100-500 mm), making
the required scaled-up photoresists prohibitively large
(several X 1000 mm).

We have found a procedure which allows the use of
both conventional light sources and feasibly small
photoresists. Figure 7 is a schematic diagram of the
recording geometry, where the two point sources are

A1)

Lo Ly

Fig.7. Recording geometry for the Type V holographic grating. The

outer circle includes the object point F, the zero-order image m, and

the correction wavelength Ax. The inner circle passes through the

two recording sources and the virtual recording source on the opposite
side of the grating.

relocated to provide quasi-stigmatism at A= for re-
cording wavelengths Ar which are significantly larger.
In general, there are six free parameters which must be
set—the three Cartesian coordinates for the two source
points. Note that, due to the plane grating surface,
both sources can be located on the same side of the
grating, and thereby be simple real sources. The 2-D
geometry of the in-plane mount immediately provides
two constraints, leaving only two pairs of coordinates

- within the plane of dispersion. We anticipate the

generation of hyperbolic groove patterns and therefore
require the central groove (x = 0) to be straight. This
requires that the source points be located on a circle
centered at the grating center, removing another free
parameter. We require the recorded line spacings to
exactly match the stigmatic line spacings [Eq. (1)] at two
points, x; and xg, which provide these two clamping
points along the grating aperture. The remaining pa-
rameter is the graze angle of incidence for one of the

- recording sources. We find the results to be relatively

insensitive to this angle, but best results are found when
the graze angles are small. For definitiveness, we place
the reference source along the line joining the stigmatic
m = 0 point and the grating center. Numerical solu-
tions to the above constraints result in recording sources
placed on circles of smaller radii than the distance L
to the A+ and m = 0 focal surface images. The record-
ing radius, Lp, is found to decrease linearly with Ap/A+
and quadratically with the mean graze angle o of the
m = 0 point. In the limit of a vanishingly small ruled
width, we find

Lr/Lo =1~ Y4[(B/e)* = 1]af(Ar/N+ — 1). (13)

We find a minimum radius Lg below which the con-
straints outlined above cannot be simultaneously met.
In the limit as the ruled width +x/L¢ vanishes, we find
(LR/L0)min = 1/2 and is 0.54 for x/Ly = £0.1. Using Eq.
(15), this results in a maximum value for the recording
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length of Ap = 3637 A was simulated and the ray traces were per-

formed at A+ = 304 A. The fractional errors in the line spacing are

indicated for both a single recording and a multipartite recording.
The attainable resolution A/AX equals d/Ad.

wavelength. For example, at aig = 6° one can use A\g/A#
as large as 62 if B/« = 2.

A good estimate to the aberrations induced at A+ by
this method is derived from the error in line spacing
along the x axis. Figure 8 shows the simulated result
of a Ap = 3637 A fabrication of the 180-mm ruled width
medium wavelength EUVE flight grating, where A+ =
304 A (\g/\+ =~ 12). The line spacings are corrected
precisely at 90 mm, and the error in line spacing Ad
at the grating center causes a spectral aberration AN\
= Ad/d of ~2.5%. By separately optimizing for five
sections along the ruled width, this error decreases by
a factor of 25, as shown by the bottom curves. The 3-D
ray trace results of Fig. 6(c) compare well with those of
Fig. 6(a) for straight mechanically ruled grooves. A
factor of 2 further optimization is seen to be possible
from Fig. 8, by adjusting the width of each section to
provide uniform errors in spacing. For 8/« = 2, we find
the following relation:

Me/AN+ = f3/(\p/Ax = 1), (16)

where f, is the focal number of the incident light beam
(the reciprocal of the cone angle converging to m = 0),
and the correction points are optimally located at both
edges of the exposed ruled width. Note that for large
Ar/Ax, Eq. (16) reveals that AN+ = A\g/fZ, i.e., inde-
pendent of the wavelength. Thus, a grating or grating
section which intercepts a 0.2° beam represents f, ~
290 and if fabricated at A\ = 3637 A will deliver a res-
olution of AX =~ 0.04 A. At \ = 1000 A, this represents
A AN = 25,000.

The grating design class discussed in this paper (both
in-plane and off-plane solutions) is defined by the
unique imaging properties at grazing incidence of these
plane gratings in converging light. Given the above
procedure for fabrication of quasi-stigmatic versions by
use of standard holographic methods, we designate this
general class of grating designs as Type V. Types I-IV
have been previously defined,!3 being curved gratings
which generally intercept diverging light.
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2. Mechanical Ruling

In principle, it is possible to mechanically fabricate
the hyperbolic groove patterns discussed above.
However, a concentric groove pattern would simplify
the ruling,!4 as it provides a mechanical constraint along
the radius of the grooves. Figure 9 shows a 3-D per-
spective of such a design. As the spacings between
these concentric grooves can be adjusted to provide a
point image at one wavelength A+ along the axis of
rotation of the grooves, stigmatism is available at this
point. The ray trace results of Fig. 6(d) are virtually
identical to those of the general hyperbolic grooves
shown in Fig. 6(b). Thus, the constraint which facili-
tates mechanical ruling does not compromise perfor-
mance.

The only difference appears to be slightly more
astigmatism for the concentric grooves at the edges of
the spectral field, due to the sagittal and tangential focal
surfaces being more disparate for concentric grooves.
The sagittal focal surface for this case is a line coincident
with the symmetry axis of the grooves, for which the
spectral images have zero height (normal to dispersion)
at any wavelength. This results from the constant
path-length difference along any one groove. Three-
dimensional ray traces have confirmed this prediction.
Calculations of the resulting aberrations in A\ proceed
as per Sec. I1.A.2, using Eq. (9) and the following rela-
tions:

L’ = +/(Lq cosag — x)2 + L3 cosZcp tan2p, (17a)
L'+ = \/(L¢ cosag — x)2 + L cos®ag tan2By, (17b)
mNAs« = /(Lo cosag — x)2 + Lg sinZag
~+/(Lo cosag — x)% + L cosZay tan?By — Po,
(17¢)

where Py = Lo(1 — cosap/cosfBy) is a scalar. After con-
siderable algebraic manipulations, we find

A =8/2 (mNdo)[m(\ — A+)/dg]x2, (18a)
or
MAN = 1/3 apf/|m(X = A+)|/do. (18b)

Equation (18b) can also be written in a form! where
do is determined from the incident aspect uncertainty
(see Sec. IV) and the desired resolving power, resulting
in (A = A*)/A« being proportional to (A/AN)~2. To test



these predictions, ray traces were performed using pa-
rameters from a proposed design for the Advanced
X-Ray Astrophysics Facility (AXAF). Figure 10(a)
shows the result for the 10-30-A band, where ag = 2.00°,
fe =382, A =204, m=—1,and do = 3550 A. The
[N — Ax|~1 dependence of the resolving power is con-
firmed, as well as the magnitude of the proportionality
constant in Eq. (18b).

However, the (tangential) focal surface which mini-
mizes the aberrations in AAX is tilted relative to the
sagittal line so as to be nearly normal to the diffracted
beam, as indicated in Fig. 9. To further minimize the
wavelength aberrations, a spherical detector is passed
through the loci of smallest spot size for A+/2 and 3/2\+.
The optimum detector radii of curvature are plotted as
solid curves in Fig. 5 for various limits. In our case, Fig.
10(a) confirms this optimization where a radius of 0.44
Lyisused. The image widths AA are significantly less
than those using the sagittal detector but are still
symmetric and asymptotic about Ax. The FWHM of
these images is smaller than the extremum extents
plotted here, resulting in slightly higher resolution, ~4
X 108 over a factor of 2 in wavelength centered at Ax.
As shown in Fig. 10(b), the image heights are small but
nonzero along this curved surface, which is not coinci-
dent with the groove axis of rotation. Ray trace results
are also shown for a flat detector passing through the
stigmatic point at A=. A flat detector can also be made
to provide the correction obtained at any two wave-
lengths along the tangential surface by defocusing the
A+ image.

C. Off-Plane Straight Fan Grooves

Figure 11 shows the projection of our off-plane grat-
ing solution on an orthogonal coordinate system. The
¥ axis is coincident with the central ruling; the vy axis is
perpendicular to this ruling and also lies within the
grating plane; and the z axis is perpendicular to this
plane. In Fig. 11(c) the dispersion cone is shown in the
y-z plane; this cross section also reveals blazed groove
profiles for this conical diffraction mount.

1. Imaging at a Correction Wavelength

We again employ the aberrant light-path function
given in Eq. (3). The path-length terms can be written
as

L =+/(Locosyo—x)2+ [y +y(A)2 + [z(A+)]2,  (19a)
L’x =+/(Locosyo— x)* + [y —y(A#) 2 + [2(A+)]%. (19Db)

At a given dispersion, optimal imaging at A+ results
from imposing the highest degree of symmetry. For the
adopted grating geometry, there is planar symmetry
about the x-z plane, so the chosen focal position of the
correction wavelength A is consistent with this sym-
metry, as shown in Fig. 11(b). This wavelength and m
= 0 are placed equidistant from the x-z plane and thus
are also equidistant from the central groove (y = 0).
This choice also allows the diffraction efficiency to be
blazed at an absolute maximum (100% of the reflec-
tance) at Ax for the central groove. The focal plane
coordinates of A« are then
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Fig. 10. Curves of extremum aberrations in wavelength and image

height as functions of wavelength for the concentric groove grating

specified in the text. Stigmatism is enforced at Ax = 20 A. For the

sagittal focal line, the image height is identically zero for all
wavelengths,

Aw

r—'ARF

RULING
FOCUS
~edF SAGITTAL PLANE

(b) TANGENTIAL CYLINDER
Xy N (RADIUS R) "

—n

Fig.11. Off-plane coordinate system. Projections are shown for the

(a) plane containing the central groove, (b) grating plane, and (c) focal

plane. Within the focal plane projection is also shown a groove profile
geometry which maximizes efficiency at A*.

y(A+) = LomA«/(2do); (20)
2(Ax) = Losinyoy'1 — 1/4 (mA+/do/sinyg)? - (21)
In units of Ly,
L =+/1-2x cosyo +x2+ (mA+/do)y + y2, (22a)
L’sx = +/1— 2x cosyg + x2 — (mAx/do)y + y2 (22b)

Expanding the radicals and simplifying, we have the
path-length difference
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Table I.

Aberration Coefficients for Off-Plane Solutions

UNIPORM LINE SPACING

RADIAL GROOVES

FAN GROOVES
ARF=Losirfyo/cony o
d(r,8)=d(r)

EQUAL CHORD FAN GRCOVES
A RF=Lgsif Y o/cony o
d(x,y)=d(x)

VARIED ANGLE FAN GROOVES
A RF=Losify o/cosy o
d(r,0 )=d(r)-[1462 /2]

d(x,y)~do ARF = 0
d(r,8 )=d(r)

terms in
ao1 -1 -1
boy +1 +1
terms in xy
a1 “1+(1/2)y & ~(1/24) o' “1+(1/2)y & -(1/24)y o'
b11 ) 1+(1/2)y & +(5/24) o

terms in 2y

a1

~14(3/2) & ~(1/ 2 o'

—14(3/2) 2-(1/2) o'

-1
2 u
=14(1/2)yg ~(1/24)r,
1-(1/2)y & H1/28)r,"

~H(3/2v & ~(1/2) '

1 - y& H2ng

1/2-(1/8) (m\ /4, Y’

-1/3 + (/3

-1
“1+(1/2)y & (1/24)y 4
1-(1/2)y & #(1/26)y '

1372y & ~(1/2) o'

1 - v& H2/3)g

1/2-(1/8) (m #/do Y
)

-1

~1(1/2)y 2 =(1/26) o'

1-(1/2) & +1/28)y o

~14(3/2)y & ~(1/2) o'

1 - vZ H2ng

1/2-(1/8) (mh #/do )
-1/2 + /2y &

b21 0 1+ y 2R3N
terms in

ap3 1/2-(1/8) (ah a/do) 1/2-(1/8) (mh #/doY

bo3 0 “1/73-Q1/3y & (279 o
co1 0 0

e11 -1 + 0(2) Y& + (16) g + 06)
21 -1 + 0(2) /2 g+ o(h)

<03 1/2 + 02) 1/6=(1/3)y & ~(1/8) (mh #/do )

0
0(6)

Yo2 /2 + 0(4)

1/6+(2/3)762 ~(1/8) (mh #/do

0(6)
2
Yo /2 + 0(4)

1/2 = (1/8)(m\ #/do)

0
0(6)
2
Yo /2 + 0(4)

v & 12-(1/8) (mk a/do)

L’x = L = (mA+/do)[—y — xy cosyo + 1/2 (1 — 3 cos?yo)x2y
+ 1/8 (4 — m2\+2/dd)y3 — x3y + 3/2 xy3

— x4y + 3x2y3 - 3/8y5 +...]. (23)
We truncate this series to read
L's — L = (mA«/do) ¥ a;jxiy, (24)

where the coefficients a;; are listed in Table 1.

The light-path function of Eq. (3) also includes the
interference term m N\, which depends on the chosen
groove pattern. For a conventional grating, the groove
number N is simply equal to y/dg, where dg is the uni-
form groove spacing. This cancels the leading term in
the path length from Eq. (23), however does not correct
for the first-order focusing term in xy. The resulting
attainable resolving power is very low,15

(25)

where v is the graze angle of reflection. This aberration
is a result of different distances between the focal sur-
face and each dispersion point on the grating. However,
by using a second such grating in tandem,!® as illus-
trated in Fig. 12(a), a nearly constant ray path distance
is maintained through the system. In this way, A/AX
can be increased by typically a factor of 10-20. Figure
12(b) shows an example ray trace, revealing highly as-
tigmatic images, and an image curvature which appears
to be the limiting effect on the wavelength resolution.

For the extreme off-plane mount in converging light,
linear dispersion per unit wavelength is proportional to
L/d, where L varies across the grating pupil and is re-
sponsible for the aberrations described above. Rather
than using a second grating to largely remove variations
in the numerator of this ratio, one can maintain a con-

MAN = sinyo/(8inYmax — SINYmin),
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Fig. 12. Tandem gratings, each having conventional uniform line

spacing: (a) 3-D perspective, (b) an example ray trace for extreme

UV spectroscopy revealing a spectral resolution in the A/AX = 100-200
range.

stant dispersion by varying the denominator d in the
same manner as L passively varies across the aperture.
This motivates the basic groove pattern illustrated in
Fig. 11(b), where the spacings increase in proportion to
L further from focus. Thus, the variation in groove
spacings is in the direction along each groove, rather
than in the direction of the ruled width.



To simplify a mechanical ruling of this type of design,
we constrain the grooves to be straight and to converge
to a common point, the ruling focus. Stigmatic inter-
ference fringes, generated by hypothetical coherent
sources Ax at the focal positions of Ax and A = 0, are
hyperboloids of revolution colliding with the plane
grating surface. In the limit asy — 0 and as the grating
is infinitely far from focus (L — «), the fringes are hy-
perbola asymptotes coincident with straight grooves
which intersect in the focal plane containing A+ and A
= 0. However, near the intersection point this ap-
proximation clearly fails, as the path-length difference
to the sources would be equal (zero) for all grooves, and
thereby provides no constructive interference for m =
0. Rather, for finite values of ¥ and L, a more accurate
approximation is obtained by making the (straight)
grooves tangent to the optimal curved grooves at the
grating center. In this case, the grooves become more
parallel and thereby intersect behind the plane con-
taining the source points. In determining the groove
number N, we therefore consider a displacement, ARF,
of the ruling focus behind this focal plane. We adopt
a polar coordinate system, where 8 = arctan(y/(Lg cosvyo
—x+ ARF)] andr2 = (Lgcosyo—x + ARF)2+ y2. For
grooves which fan-out linearly from a common point,
d(r,0)/dy = r/[Lg cosyo + ARF]. For equal angular
spacings between grooves, d(r,0) = d(r,0), the groove
number is N = r6/d(r,0) or

N = [(Lo cosyo + ARF)/dy) arctan[y/(Lg cosyo — % + ARF)].
(26)

Expanding the trigonometric functions and treating the
graze angle v as a small quantity, we determine coeffi-
cients b;;, corresponding to the powers of x and y given
in Eq. (24), to be

boy = +1,
bpu=Q0+1/2y3+5/24v§+...)
—ARF(1-1/2~v%+..)+ ARF2 + ...,
b =(1++3+2/3vy8+..)— ARFC2+3vE+..)
+3ARF2+...,
bos=(—1/3—1/3v3—2/9v¢+...)
+ ARF(2/3+y3+...)—ARF2+...,
bis=—1-3/2v%+ 3ARF — 6ARF2+. ..,
bgy = +1 +3/2v3 — 3ARF + 6ARF2 + ...,
boz=—2+8ARF + ...,
by =+1—4ARF +.... @7

In all cases co; = 0, as with uniform line spacings.
However, cancellation of the other dominant terms
depends strongly on the choice of ARF. Defining A =
(mA=/do) 2 ¢;jxty’, where ¢;; = a;; + b;j, several solu-
tions for ARF can be interpreted:

Casea: ARF=0

This solution has been proposed as a radial groove
grating® for which the central hub of the rulings (anal-
ogous to the ruling focus) lies in the plane of the zero-
order image (compare Fig. 6 of Ref. 6). While one can
also consider curving the focal surface, as investigated
in the next section, this reduces aberrations only away

from Ax (if only the focal surface was displaced, the
symmetry would be disturbed and result in larger ab-
errations). The aberration coefficients are given in
Table I, with dominant terms being

A = (mA+/do)[ydxy + 5/2v3x2y + 1/6 y3+...] - (28)
Using the off-plane analogs of Eqs. (6a) and (6b),

MAX = (mA+/do)/(6A/5y), (29a)
H/Lg = (1/v0)(6A/8x), (29b)
we have the focal plane aberrations:
MNAN = [yofs1 +5/8f;2+ 1/8 f;2]‘1, (30a)
H/Lo = (m\s/do)(vo +5/213") [, (30b)

where f; = 1/(Ymax — Ymin). The linear dependence on
vo dominates both aberrations and results in the re-
ported degradation of imaging as the graze angle be-
comes large.6 Ray traces of this solution are presented
in Fig. 13(d), confirming the above quantitative pre-
dictions. The parameters used in this ray trace corre-
spond to those used in the in-plane straight groove ray
traces of Fig. 3:

Y0 ="7.089° Lo=48547mm; do=2125A4;
Ymin = 6.02°  Ymax = 8.62° fy, =6.2 A+ =150A.

Case b: ARF ~ L sin2y,

This solution, an oriental fan, was introduced in our
previous paper.! If ARF/Lq = sin?y cosyy, the domi-
nant term cy; of the light-path function decreases by a
factor v§ compared to uniform line spacings, and a
factor v% in comparison to the radial groove solution.
Although this already causes the term to be negligible
at grazing incidence, Egs. (27) also reveal that a slight
alteration, where ARF/Lg = sinyg tanyo, reduces the
proportionality constant to v§, allowing the design to
be extended to large graze angles. In either case, the
dominant terms are given in Table T as

A= (mA+/do)[1/2 v3x2y + 1/6 y3 + 1/2xy3 + .. ] - 81)

This is the result reported previously,! resulting in focal
plane aberrations:

NAN = [1/8 f32 + 1/8 f;2] "1 = 8f2,

where f = 1/7/f72 + 152, (32a)
H/Lq == (1/2) (mA+/do)/(f+fy)- (32b)

Note that A/AX and H/L are both independent of
the graze angle. The optimal displacement, ARF, can
also be obtained by minimizing the variation in
L(x,0)/d(x,0) across the grating pupil coordinate x, as
suggested above. Writing L(x,0) =
v (Lo cosyo — x)2 + L3 sinZy,, using d(x,0)/d as given
from the derivation of Eq. (26), and setting 6(L/x)/0x
=0, we find ’

(Lo cosyo — x)2 + L sin2yq = (Lo cosyo — x)
X (Lg cosyg — x + ARF),
(33)
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Fig. 13. Ray traces for oriental fan grating showing (a) the conical wavelength map and the spot diagrams for various cases: (b)-(f) no dis-
placement of the ruling focus behind the mirror focus ARF = 0; (g)-(k) an optimal displacement ARF =~ L siny; and (1)-{p) an optimal dis-
placement plus an optimized angular variation of the groove spacings. In all cases the sagittal detector plane has been employed.

for which the solution is ARF/Lq = siny, tanvyo, as de-
rived above by minimizing the error in the light-path
function. Figure 11(a) shows a geometric operational
definition of ARF, being that from a right triangle with
one leg equal to Ly. Thus F lies on a semicircle.

A comparison of Egs. (30a) and (32a) reveals that this
displacement of the ruling focus behind the zero-order
image significantly reduces the wavelength aberrations.
In the limit as 7, vanishes and f; < f,, the reduction is
afactor of 5. At finite graze angles, the first-order fo-
cusing term of the case ARF = 0 also contributes, re-
sulting in even larger differences. In the limit as f, >
max(fy,8vofZ), the aberrations in A\ are equal for the
two cases. The image heights [Eqgs. (30b) and (32b)] are
reduced at least a factor of 5, as yo — 0. For yo > 5/
(2f,), the astigmatic term ¢1; dominates in the case ARF
= 0, leading to larger differences. Figure 13(i) shows
the results given the same (EUVE) parameters used for
Case a, revealing an enhancement in spectral resolution
and a factor of 10 reduction in astigmatism. Also evi-
dent in these spot diagrams are central cores which are
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significantly smaller than the extremum ray enve-
lopes.

Comparison of Eqgs. (8b) and (32b) or Fig. 13 reveals
that the image height is significantly smaller than that
of the in-plane solution, by a factor of ctg. However, for
the in-plane solution, straight grooves yield a A\/AX
which depends only on the focal number along the di-
rection of the groove lengths, f,, because the spacings
of the in-plane grooves are varied to obtain perfect fo-
cusing along an axis running across the ruled width. In
contrast, the off-plane grating was assumed to have
equal angular spacings, for which perfect focusing is not
achieved across any slice of the ruled width. Therefore,
A/AN for the off-plane solution depends on the focal
numbers in both directions (f, is along the groove
lengths and f, is across the ruled width for the off-plane
geometry). If both focal numbers are equal, the re-
solving power of the off-plane solution is a factor of 2
lower than for the in-plane solution. Since the variation
in reflection angle across the grating aperture is mini-
mized by choosing f, > f,, the spectral resolution is
dominated by f,.



2. Optimized Angular Variation of Fan Grooves

The spectral resolution can be significantly improved
by relaxing the constraint of equal angular spacings, i.e.,
not requiring that d(r,f) = d(r,0). We seek to cancel
the dominant aberration along the y axis and to thereby
obtain cg3 =~ 0. We anticipate a functional dependence
d(r,0) = d(r,0) X (1 4+ n62), for which the groove number
N is a modified version of Eq. (26):

N = (Lo cosyo + ARF)/do j; " d46/1 + 107, (34)

Performing the integral and substituting ARF = sin<yg
tanyg, we have

N = (Lo cosyo+ ARF)/do X (8 — n03/3 + 5205/5 + .. .)
=~ N(n = 0) — (1/3)Lo/do
X arctan3[y/(Lo cosyo — x + ARF)]. (35)

If n = 1/2, the additional term of Eq. (35) cancels the
dominant terms in cg3, ¢13, and ¢a3, as evident from in-
spection of Eqgs. (23), (27), and (31). This provides the
desired result, namely, \/AX = 8f2 independent of f,.
A significant increase in A/AM is shown in the ray traces
of Fig. 13(n). Also apparent from Egs. (35) and (31) is
that a choice n = —1 results in a factor of 3 increase in
the cg3 term and thus in the spectral aberration com-
pared to the previous case. These angular spacings of
the grooves are approximately such that the linear
spacings are independent of v, i.e., d(x,y) = d(x). Since
this corresponds to equal intervals between grooves of
the quantity tanf, the term 6 =arctan |. . .] in Eq. (26)
is revised to read simply 0 = y/(Ly cosye — x +
ARF).

For values of (mA+/d)2 which are non-negligible, one
must also consider the contribution of that term from
aog, which is (\AN) = (32/3)f%/(m\+/dg)2. By a minor
adjustment of the value n = 1/2 — 3/8(mA#/d)2, this
term can be minimized to equal A/AN =~
32/9fvo/ (mA*/dp)2 If A+ is the blazed wavelength,
it is also noted that mAs/dg = 2 sind sinvyg, where 6 is the
blaze angle of the grating grooves. Thus, such an ad-
justment in 7 is necessary only if both the graze angle
and the blaze angle are large.

3. Spectral Field Aberrations

As for the in-plane solution, we again consider the
growth in aberrations as one moves in wavelength away
from Ax. A convenient focal surface for this analytic
calculation is the plane containing both Ax and A = 0
and being perpendicular to the x axis (the central
groove). We will find this to be the sagittal surface,
where the image heights are minimized, analogous to the
sagittal sphere for the in-plane grating. We again write
for the difference in wave front aberration, A — Ax =L’
— L'« + mN(A = Ax). In the present geometry, we
substitute the following:

L’ =+/1=2x cosyo + x%2 — (mA+/do)y + y2 + 2[m(A+ — N)/do]y,

(36a)

L'+ = /T = 2x cosyo + x2 — (mA+/do)y + y2 (36b)
N=/doly + (1 — v§/2)xy

+ (1= ydx2y - 1/3—vy3+..]> (36¢)

RESOLVING POWER A\/AX

ARF =0

I ! I L L
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T T T T

T T
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WAVELENGTH (&)
Fig. 14. Curves of extremum aberrations in wavelength and image
height as functions of wavelength for the off-plane grating specified
in the text. The correction wavelength is 150 A. The light curves
summarize the results of Fig. 13 for the sagittal focal plane, while the
dark curves indicate the ray trace results for the optimally curved
cylinders.

where we have substituted for y(\) = y(A+) + Lom(A
— M#)/do = Lom(\ — A+/2)/d, for 22(\) = LE sinyo —
y2()\), and where the value for N has been taken from
Table I for equal angular spacings. Expanding the
radicals, we find

A = A+ =[1/2 cosyom (N — A+)/do mA/do]x
+ [1/2 m(X = As)/dg sinyo)x2y
= [1/2 m(\ = Ax)/dg mN/do]y?
+ [1/6 m(\ — A+)/do]y>. 37

The terms in x2y and in y3 are identical to those
present in Ax and therefore represent the same value
of A/AM as well as the previous result for H/L, where
A now replaces A+. However, there are two additional
terms for A % A+, one in x and one in y2. The former
gives rise to a shift in H/Lq which grows as (A — M%)\
and is significant only for large values of (A — Ax), sig-
nifying departure from a truly sagittal focal surface.

‘The latter term represents a degradation in spectral

resolution which grows linearly with (A — A%). Taking
0A/dy, we thereby derive a resolution:

MNAN = 8/[f72 + £7% + 8|m| (A = Ax)/do/fy)]. (38)

Note that this is identical to the spectral field obtained
in Eq. (14a) for the in-plane straight groove solution, if
the off-plane line spacing is decreased by a factor of «.
In Sec. III, this is shown to represent equal dispersive
power for the in-plane and off-plane mountings. Note
that, for A < Ax, the spectral field aberration partially
cancels the first two terms in Eq. (38) and thereby
maximum A/AN is obtained somewhat shortward of A+,
Figure 14 confirms this formula across the factor of 4 in
spectral range which is shown, where A/A\ peaks at
2Ax/3, and decreases symmetrically to either side. Also
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shown are the cases of varied angular spacings and the
nonoptimal case of ARF = 0. In these cases, the re-
solving power also degrades along this plane focal sur-
face as A moves away from A+. This has a particularly
deleterious effect on the varied angle design, whose
resolution remains high only in the immediate vicinity
of Ax,

To minimize aberrations in A\, we next consider
curvature of the optimal tangential focal surface. Ifa
detector displacement toward the grating, Axp, is in-
serted into the expansion of Eq. (22b) (ie., x = x +
Axp), an additional term is introduced into the aberrant
light-path function:

A=A+ (1/2) (Axp/Lo)y> (39)

This cancels the y2 term of the field aberration in Eq.
(37) if Axp/Lo = —=[m(A+ — N\)/do mA/dg]. Note that
this quantity is invariant on a substitution A = A+ — A
= Ax/2 — (A — A+/2). Thus, the detector curvature is
symmetric about the x-z plane, which contains A+/2.
To minimize the number of adjustable parameters, we
fit a cylinder through the focal plane positions of A+ and
A =0, as shown in Fig. 11(b). The center of curvature
is therefore in the x-z plane, and a displacement toward
the grating of this focal surface can be written as

Axp = R(cos¢ — cospx), (40)

where R is the radius of curvature of the cylinder, and
where sing ~ y(A\)/R. Using the substitution given
above for ¥()), the detector displacement can be ex-
pressed in terms of its radius and the impinging wave-
length:

Axp/Lo = —(1/2)(m/do)2A(A+ — N)Lo/R. (41)

Matching this curvature with that derived above to
cancel the dominant field aberration, the optimal radius
is thus R/L¢ = 1/2. Ray traces confirming this result
are summarized in Fig. 14 for both equal and varied
angle fan gratings. The resolution becomes nearly
constant as a function of \. Also shown is the result for
the case ARF = 0, for which the same radius of curva-
ture has been reported by Cash.6 However, we find the
magnitude of the spectral resolution at A+ for this ge-
ometry is still given by Eq. (30a). We do not find any
significant increase in astigmatism using a tangential
focal surface, as shown in Fig. 14(b).

lil. Dispersive Aberrations

The net attainable resolution depends not only on the
grating aberrations but also on the ability of the grating
to dispersively separate the finite zero-order image sizes
entering the grating or introduced downstream of the
dispersion. Figure 15 illustrates the effect of a mirror
focusing blur in the dispersion direction. If F is the
effective focal length of the mirror and ¢ is the corre-
sponding mirror quality (i.e., in radians of aspect un-
certainty in the sky), a bundle of rays will impinge on
the grating at deviant positions and angles. As the
grating line spacing is also a function of position, there
are three aberrant effects; however Fig. 15 indicates they
may all be cast in terms of an effective angular error Ax
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Fig. 15. Off-axis in-plane grating illumination, revealing the
equivalent error in incident angle Aay, produced by a displacement
of the mirror focus from F to F”.

alone. For the present analysis, we may ignore varia-
tions in A« across the grating pupil and write simply

Aayp == (F/Lo)e. (42)

A. In-Plane Diffraction

For the in-plane gratings, this error is converted di-
rectly into a wavelength aberration through a differ-
ential of the grating equation:

AN = (do/m) X (ABo sinfo — Awrg sinay). (43)

We fix the diffracted angle 8 and thereby determine the
uncertainty in A at that focal plane position.

Equation (43) can be written in several forms. In
terms of the plate scale, 6\/0s, we obtain A\ = Fe(6\/s)
sinag/sinfy, or in terms of dimensionless ratios, we find
in the limit of small angles:

AN = 2(F/Lo)e/(|B3/af — 1| o).

Thus, the dispersive resolving power of these spec-
trometers increases linearly with the system length
(~Lyo) and decreases linearly at smaller graze angles a.
However, this decrease can be offset by using larger
ratios of B/ and therefore use of an inside spectral
order. For example, if F/Lo = 10,¢ = 1 sec of arc, ctg =
5°, and Bo/ag = 5, one achieves N/AX = 20,000. If op-
erating at the blaze condition, the relative diffraction
efficiency is approximately'® equal to the ratio (c«t/8) for
m < 0 and (B/a) for m > 0, and « can be expressed in
terms of (B/a) and the facet graze angle y. This
yields

(44a)

ANMM = (F/Lo)e/sinyo/|Boforo — 1]. (44b)

Figure 16 plots this result as a function of -y, assuming
Bo/ag = 3, for various combinations of F/Ly and .
However, for m = —1 and peak blaze efficiencies of 50%
or smaller, the curve of diffraction efficiency vs wave-
length extends to wavelengths significantly larger than
Ablazee In this way, significantly higher resolution can
be achieved through large values of 8 longward of the
blaze.

The required grating size is determined by f, along
the grooves and by f, across the ruled width. The ruled
width is almost always the larger dimension at grazing
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Fig. 16. Practically attainable spectral resolution for a grazing in-
cidence grating in a converging beam as a function of the mean graze
angle yo. Lo is the distance from grating center to focus. Other pa-
rameters assumed for the grating mounting are indicated in the text.
The solid lines indicate the ability to dispersively separate images
from collecting mirrors (focal length F) of various image qualities (e).
The horizontal dot-dash lines indicate the grating aberrations for an
optimized fan groove pattern having varied angular spacings. The
wavelengths for which single-coating reflectance is 50% are indicated
at the bottom.

incidence for this in-plane mount and is approximately
equal to

ruled width = [(Lo/f)/sinyo](Bo/cto + 1)/2. 45)

B. Conical Diffraction

To obtain maximum efficiency, the blaze angle ¢ of
the grating grooves is made equal to the incident and
diffracted angles at the grating center. Thus, the cor-
rection wavelength A« is also the blazed wavelength. If
¢ represents the aspect uncertainty of the collecting
mirror in the direction of dispersion, we find for the
resolution

ANX = (F/Lo)e/tand/sinyo/2, (46)

where v is the graze angle of reflection at the grating
center. This result is similar to that obtained for con-
ical gratings in parallel light, where (¥/L,) is then re-
placed by the concentration ratio of the collimating/
collecting mirror system. To feasibly limit the grating
size, we choose a blaze angle of 45°. Given equal re-
flection angles <y, this yields a dispersive resolution
equal to that of an in-plane grating blazed at Bo/cg = 3.
This is evident from comparison of Eqs. (44b) and (46)
and is plotted in Fig. 16.

Also plotted in Fig. 16 are the intrinsic aberrations
for a varied angle fan grating, which depend on only the
focal ratio f, along the grooves. In the EUV (A ~
100-1000 A), graze angles less than ~12° must be used
to obtain reflection efficiency in excess of 50%. This

results in the dispersive and grating aberrations being
comparable, limiting A/AX to values of ~7000, given
F/Ly=10,e =1secofarc,and f, =30. If F/Ly=5,¢
= 0.5 sec of arc, and f,, = 60, the resolution increases to
MAN =~ 36,000. At the shortest wavelengths where
single layered reflection gratings are feasible (A ~ 10 A),
dispersive aberrations limit the resolution. However,
by use of grating multilayer coatings,!” it may be pos-
sible to extend such designs to shorter wavelengths.
This will also permit larger graze angles for coverage of
narrow bands in the the soft x-ray region.

In the case of the off-plane mount, the long dimension
of the grating is that along the groove lengths and de-
pends on the focal ratios in both directions:

groove length ~ (Lo/f)/sinyo + (Lo/fy) tand/sinye.  (47)

Thus, for the usual case of f, < f;, the conical mount
requires a longer grating. For example if f, = 2f,, the
off-plane grating is ~50% larger in both dimensions.

The above analysis indicates the theoretical limit to
resolution at small graze angles, independent of the
spectral order. However, a very practical limitation is
also the required line density. It appears not to be
generally appreciated that the use of grazing incidence
is only partly motivated (although necessarily so) by the
high reflective throughput achieved at short wave-
lengths. A second motivation for grazing incidence is
also crucial and applies only to in-plane diffraction.
Dispersion increases by the factor 1/sin83, where 3 is the
graze angle of diffraction for an in-plane mounting.
This angle is of the order of v = the graze angle, thereby
providing the very high angular dispersion necessary to
obtain a given A/AX at short wavelengths. At normal
incidence or in conical diffraction, where this factor is
absent, the required line densities are of the order of 1/y
larger or

1/d (lines/mm) = 50/AN(A) X (sec of arc) X |F/Lo/m| X cosd.
(48)

For example, at 6 = 45° and Fe/Lq = 10, a resolution
in first order of A/AN = 20,000 at 100 A requires 70,000
lines/mm, which is unfeasible by a factor of 10. Thus,
high spectral orders must be used to obtain such reso-
lutions, provided the graze angles are also made large
enough to honor Eq. (46).

IV. Misalignment Aberrations

As shown above, either in-plane or off-plane gratings
can attain high resolution performance. In this section,
we consider aberrations induced by fixed errors in the
positioning of the components of a spectrometer uti-
lizing in-plane gratings. These may be separated into
three categories: (1) positioning of the convergent
beam focus relative to the grating, (2) linear and angular
positioning of the grating relative to the imaging focus
and the assumed spectral focus, and (3) positioning of
the detector relative to the grating. Each of these,
predominantly (1) and (2), will result mostly in a shift
in wavelength, A = A+ + DA, which is diffracted to the
point in space previously occupied by Ax. Variations
in this shift, for different regions of the grating aperture,
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result in a residual aberration ANy due to the mis-
alignment.

Fixing the exit pupil at the position occupied by Ax
in Sec. II, one can set up a general if not elegant equation
for the aberrant light path:

Ay = L' = L+ mNX+(1 + DN/ Xx) — Ax, (49)

where the factor in parenthesis represents the fractional
shift in wavelength being diffracted to the exit pupil.
This shift is determined by requiring the coefficient of
the x! term to vanish in the above expression. The
value of the interference term mN Ax is obtained from
Eqg. (4b), and the perturbed distances L+’ and L are
given in dimensionless units of Lq:

L =+/(cosap— x — Ax)2 + (y + Ay)? + (sinag + A2)2,  (50a)
L+ =+/(cosfp — x — Ax")?> + (y + Ay')2 + (sinfo — Az')®2  (50b)

for the case Ly = Lo. For the concentric groove geom-
etry, L is also described by Eq. (50a), but L+’ is obtained
from a perturbed form of Eq. (17b):

L+ = +v/(cosag — x — Ax")2 + (y + Ay’)? + (cosap tanfp — Az’)?,
(51)

and the interference term mNA=+ is given in Eq.
(17¢).

Consider the mirror focus of Fig. 9 to be displaced by
Azp along the rotation axis of the concentric grooves.
In terms of the equivalent off-axis mirror angle Q, Azp
= F(Q,, where F is the effective mirror focal length. For
the present analysis, the focal surface of the collecting
mirror is assumed to include the groove axis of sym-
metry. The induced shift in wavelength diffracted to
the fixed exit pupil can be obtained from Eq. (43) or Eqg.
(49):

DX/ = 2(Azrp/Lo)/ o/ (B3/ e — 1) (52)

The variation in this shift arises dominantly from the
x2 term of Eq. (49) and equals

ANN« = (3/fx)(Dzp/Lo)[Bé/ af + 2/3 B3/af~ 5/3)/(B3/af — 1)2] -
(53)

For Bo/cg > 2, the bracketed term is approximately
equal to unity. By use of Eq. (18b), it is evident that
this aberration is identical to that resulting from the
spectral field aberration over a wavelength region given
by Eq. (52), as substantiated through ray tracing cal-
culations. This simple equivalence principle holds as
long as the off-axis object point moves along the as-
sumed focal surface for which the spectral field aber-
ration has been calculated. Thus, for the case of general
hyperbolic grooves or straight grooves, where Ly = Lo,
Eq. (14a) describes the wavelength aberration for object
points which move along a circle of radius Ly. For the
case of tangential focal surfaces, the aberrations are
significantly reduced as for spectral field aberrations.

However, in general the focal surfaces of the collecting
mirror and the grating will not match, and one must
consider a displacement Axr of the object point (e.g.,
the mirror focus) in front of or behind the grating focal

3234  APPLIED OPTICS / Vol. 23, No. 18 / 15 September 1984

surface. Using Egs. (49) and (50), this is found to yield
an aberration

AN = 2(Axp/Lo) aoff/ (B3 ad — 1). (54)

A detector displacement, Axp along the direction of
the central ray, will give rise to a similar aberration.
This can be easily calculated, from the diameter of the
ray cone intercepted at the displaced position and the
plate scale, to be

ANNx = 2(Bo/tg)2(Axp/Lo)/ ao/f+/ (B3 af = 1). (55)

Note that this is a factor of (Go/a0)? worse than that due
to a comparable displacement of the object point. This
factor is obtained by realizing that (a) the diffracted
beam is (8o/cp) faster than the incident beam, and (b)
the effect of a given angular displacement, AB, is also
a factor of (8o/a) larger in wavelength than that due to
a displacement Aq, as derived in Eq. (43).

The effect of grating translational and rotational
misalignments can also be studied by appropriate
substitution in Eqgs. (49)-(51) for the six quantities:
Ax,Ax’ Ay,Ay’,Az,Az’. For example, a grating pitch
7y about the y axis leads to the substitution Az = Az’
= —xT,, resulting in

DN« =~ 27y /ao/(Bo cto — 1), (56a)
ANAx =~ 47, (Bo/ap — 1) /f+. (56b)

The final consideration is the curvature of the de-
tector surface required to minimize aberrations re-
sulting from object points off-axis in the off-plane di-
rection perpendicular to dispersion, i.e., ¥ ¢ 0. Mini-
mizing the spectral aberrations AM, preliminary ray
traces reveal a radius of curvature in this direction
which is significantly smaller than the optimal radius
of curvature within the dispersion plane. Thus, if the
grating is to be illuminated off-axis in this direction, a
first approximation to the optimal focal surface is a
toroid. More detailed results will be reported in a study
of echelle grating combinations, where the 2-D wave-
length map requires particular attention to the shape
of the focal surface.

V. Conclusions

We have presented in detail the imaging properties
of several designs for varied line-space gratings in con-
verging beams of light. A common feature to both the
in-plane and off-plane solutions is that the imaging does
not degrade as the graze angle of reflection vanishes.
This is in striking contrast to the behavior of other
grazing incidence gratings (e.g., a concave Rowland
circle grating) where aberrations rapidly grow at grazing
incidence.

For the straight groove designs (whether they are
in-plane and parallel or off-plane and in a fan geome-
try), the dominant aberration is coma. The spectral
fields are similar and are improved by use of curved
focal surfaces of comparable radii. Astigmatism is
linear with wavelength along the sagittal focal surfaces
of the straight groove designs.

The main difference between the straight groove
designs is the practically attainable resolution, which



depends strongly on the dispersive power. The off-
plane design requires significantly higher line densities
and is limited in dispersive power by the conical ge-
ometry of the diffracted beam. However, the conical
mount concentrates the diffracted energy into a single
spectral order, and thus may find use as an echelle at
high resolution, or in first order at lower resolution than
in-plane gratings.

The curved groove designs (in-plane) achieve reso-
lutions comparable with normal incidence gratings.
Their geometries are sufficiently symmetric to allow
fabrication through either mechanical or holographic
rulings. Owing to the plane grating surface, off-axis and
grating misalignment aberrations are small, which en-
courages the design of echelle spectrometers utilizing
various combinations of plane gratings with varied line
spacings.

Note added in proof. Inequation 19, v, is the angle
between the incident central ray and the x-axis, as
present in the generalized grating equation: mAx/d
= sinyo(cosB* — cosayg); Yo is thus also the half-cone
angle of the rays diffracted from the central groove.”
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